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Abstract—This study explores the application of deep learning
to forecasting the state of Illinois sale tax receipts in ten cate-
gories: general merchandise, food, drinking and eating, apparel,
furniture, building and hardware, automotive and filling stations,
drugs and retail, agriculture and all others, and manufacturers.
The state of Illinois has used traditional techniques of economic
and tax receipt forecasting in order to project the amount of
resources that it will have in order to finance its activities and
debts. Such techniques are mostly linear and lack the ability
to model more complex non-linear or long term dependencies.
Recently, deep learning models have shown promising results
in time series forecasting. In this study, we use two types of
neural networks (a simple Multi-Layer Perceptron and a Long
Short Term Memory network to forecast the state of Illinois
sale tax receipts and compare the performance of both models
against the more traditional autoregressive integrated moving
Average model. Unfortunately, only limited tax receipt data is
publicly made available by the state of Illinois which makes it
particularly challenging to train a robust neural network model
without overfitting. To address this data limitation, we propose
to use a global model with an embedding layer for all ten tax
categories. The empirical results show that the global Multi-
Layer Perceptron model has the best performance in one step
forecasting of Illinois sale tax receipts followed by the global Long
Short Term memory model. On average, both neural network
models outperformed the traditional Integraded Moving Average
model.

I. INTRODUCTION

The state of Illinois faces numerous financial difficulties. At

the end of fiscal year 2017 (June 30), the state reported that its

liabilities (the amount that it owes individuals or organizations

outside of the state itself) totaled $161.2 billion more than its

assets. To put this amount in perspective, this equates to a debt

of over $12,500 borne by each person in the state. Out of the

“larger” states (ones with population greater than 10,000,000),

the state with the next largest debt burden (California) has

$4,250 in per capita debt. Interest on state debt accounts for

3 percent of all revenues, and this amount does not take into

account that the state is not making its required payments

for pension benefits, essentially incurring more debt each year

to finance its activities (all figures are from [1]). With the

state holding so much debt, each fiscal decision that the state

makes is magnified in importance. Those decisions are based

on data on past, current, and most importantly future revenues

and expenditures. The state has used traditional techniques

of economic and revenue forecasting in order to project the

amount of resources that the state will have in order to finance

its activities and debts.

Numerous techniques for forecasting the economy and rev-

enues in the medium-to-long-term have been developed. These

include: qualitative techniques where forecasts of future values

made by multiple sources are combined into a consensus

forecast; naive quantitative forecasts where only past values

of a variable are used to develop a forecast; parameterized

quantitative forecasts using past values of a variable along

with the current and past values of other variables; full

systems models where a relatively complex model featuring

multiple linkages between variables is estimated. Most of

the models described above have been linear. Models such

as Autoregressive Integrated Moving Average (ARIMA) have

been used frequently in econometrics for forecasting future

behavior based on past data [2]. However, they have been

plagued by issues such as structural breaks in the data,

excessive noise in past observations and instability of the

models over time [3]. Over the last two decades more complex,

non-linear machine learning models have proven themselves to

have a superior predictive performance in several forecasting

competitions [4, 5, 6]. These models typically convert a one-

step or multiple-step forecasting problem (where past data is

extrapolated to forecast one period or many periods ahead) to

a supervised learning problem where each observation consists

of the values of a variable in the previous time steps and the

value of that variable in the next time step. A machine learning

algorithm then learns a mapping between the previous time

steps and the next time step. Such mapping can be used to

forecast the value of a variable in a future time given its values

in the past.

More recently, studies have shown that deep artificial neural

networks outperform other types of machine learning algo-

rithms in financial time series forecasting [7, 8, 9]. The advan-

tages of using deep neural networks for forecasting problems
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are their robustness to noise, ability to capture non-linear

relationship between input and output variables and inherently

supporting multivariate input and multi-step forecasts.

In this study we use a simple Multi-Layer Perceptron (MLP)

and a recurrent neural network (in particular, Long Short Term

Memory Network (LSTM)), for forecasting the state of Illinois

sale tax receipts in different sale categories from the past

tax receipt data. We compare the prediction performance of

the neural network models with the more traditional ARIMA

model.

Unfortunately, the state of Illinois has made only limited

tax receipt data publicly available for each sales tax category

( quarterly tax receipt is provided since 1999 for a total of 77

data points for each series). The lack of sufficient data makes it

particularly challenging to train a robust neural network model

without overfitting [10]. For this reason, we use the idea of

transfer learning [11] and instead of training a separate neural

network model per tax category, we train a single global model

using the combined time series data from all tax categories.

This allows the model to learn shared dependencies between

time series.At the same time, we add an additional feature

to represent the tax category in order to learn dependencies

specific to each individual time series. This additional feature

is passed through an embedding layer to reduce its dimensions.

II. BACKGROUND

A. ARIMA model

ARIMA is a general linear model that combines autore-
gression with differencing and moving average. Autoregression

(AR) means that the time lagged values of a variable are used

as predictors to forecast the value of that variable in future.

A time series is said to be stationary if its statistical

properties (such as mean, variance, and autocorrelation) are

constant over time. Time series with trend and/or seasonality

components are not stationary. Trend exists if there is a long

term increase or decrease in the data. Seasonality exists when

data is affected by seasonal factors such as the time of the

year or the day of the week and exhibits repeated patterns

within any fixed period. The Integrating step in ARIMA model

computes the difference between consecutive observations to

remove possible trends. The Moving Average (MA) step in

ARIMA uses the residual errors in the previous time steps

as predictors. The ARIMA model is characterized by three

hyper-parameters (p, q, d) and is written as follows:

yt = c+

p∑

i=1

φi ∗ yt−i +

q∑

i=0

θi ∗ εt−i

where c is a constant, yt is the series obtained after dif-

ferencing d times where d is the difference order, p is the

order of autoregressive part (the number of lagged observations

used in autoregression), q is the order of moving average (the

number of previous error terms used in the regression) and εt
is Gaussian white noise.

If a time series has a seasonal component, then either the

seasonality is removed before applying the ARIMA model or

a seasonal ARIMA model (SARIMA) is used which directly

incorporate both seasonal and nonseasonal factors into a

multiplicative model [12].

B. MLP model

A Multi-Layer Perceptron (aka feed forward neural net-

work) consists of at least three layers of neurons where the

neurons in each layer are connected to all of the neurons in

the next layer. The first layer is the input layer and has the

same number of neurons as the number of features in the

dataset. The input neurons are identity functions forwarding

the input signals to the next hidden layer. A MLP might have

one or more hidden layers. Each neuron in a hidden layer

takes the weighted sum of the outputs of the neurons in the

previous layer and combines them using a non-linear activation

function, such as (sigmoid, hyperbolic tangent, Relu, etc.). The

outputs of the neurons in the final layer form the output of the

neural network model. Formally, the output of a hidden neuron

in a simple MLP model can be written as:

h(l+1) = f(W (l)h(l) + b(l))

where h(l+1) and h(l) are vectors denoting the outputs of the

neurons in layers l + 1 and l, respectively. W (l) is a matrix

representing the weights of the links connecting the neurons in

layer l to the neurons in layer l+1, and b(l) (called bias) is a

vector of constant values associated with the neurons in layer

l. Training a MLP involves using a gradient descent algorithm

to learn the optimum values for the weight matrix and the bias

vector in each layer.

C. LSTM model

LSTM is a type of recurrent neural network (RNN). RNNs

are capable of modeling sequential data by including a feed-

back loop. In an RNN, the output of a neuron at time step

t not only depends on its input at time step t but also its

previous output at time step t − 1. The vanilla RNN suffers

from instability due to the vanishing gradient problem when

the input sequence is long [13]. One of the most widely used

models proposed to address this instability is the Long Short

Term Memory (LSTM) model [14].

LSTM keeps a cell state consisting of three gates which

control removing, adding and filtering the information in the

cell state. A forget gate takes ht−1 (the output of the neuron

at the previous time step) and xt (the input at the current time

step) and outputs a number between zero and one which is

then multiplied by the old cell state and essentially decides

which information in the cell state should pass through and

which information should be forgotten.

ft = σ(Wf .[ht−1,xt] + bf )

where σ is the sigmoid function. An update gate decides which

new information should be stored in the cell state. This has

two parts. First a sigmoid is applied to ht−1 and xt to decide

which value in the cell state should be updated. A hyperbolic
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tangent is also applied to create a vector c̃t of new candidate

values to be added to the cell state.

it = σ(Wi.[ht−1,xt] + bi)

c̃t = tanh(Wc.[ht−1,xt] + bc)

Second, the cell state is updated by applying the forget gate

to the old cell state and adding the new information from the

update gate ( that is, it ∗ c̃t)
ct = ft ∗ ct−1 + it ∗ c̃t

Finally, an output gate, ot decides what should be the output

of the neuron ht, base on the previous output ht−1, new input

xt, and the updated cell state, ct:

ot = σ(Wo.[ht−1,xt] + bo)

ht = ot ∗ tanh(ct)
III. ILLINOIS SALE TAX RECEIPT DATA

We used data from the Illinois Department of Revenue on

sales tax receipts by Standard Industrial Classification (SIC)

code [16]. This data is available quarterly going back to 1999

in ten tax categories, including general merchandise, food,

drinking & eating, apparel, furniture, building & hardware,

automotive & filling stations, drugs & retail, agriculture & all

others, and manufacturers. There are a total of 77 time steps

in each category.Using data at a finer level than most revenue

forecasts (which consider only the total revenue received by

the state) offers an ability to see changes more readily and

capture trends. Tax receipt series for all categories are plotted

in figure 1

IV. DATA PREPARATION

Although, in principle, neural networks can capture season-

ality and trend variations in time series data, they require a

lot more data to do so. Hence, in practice, it often works

better if time series data is transformed using seasonal and/or

trend adjustments [17].Transformations such as logarithm can

help stabalise the variance of a time series and differencing

can help stabalising the mean of a time series, eliminating or

reducing trend and seasonality [12]. A difference series is built

from an original series by taking the difference of the lagged

observations. If the series has a seasonal effect, the difference

series is built by taking the difference between an observation

and the previous observation from the same season.

Looking at figure 1, the tax receipt series for all categories

show strong annual seasonal effects (that is, the pattern is

repeated every four quarters). Before feeding the data to the

deep learning model we take the logarithm of tax receipt

values and make seasonal adjustments by taking the difference

between each value and the value of the same quarter in

previous year. That is,

yt = log(rt)− log(rt−4)

where rt is the raw tax receipt at time step t and yt is the

transformed tax receipt. Once data is transformed, it was split

into train and test sets. The last 12 quarters of each series

was used for testing and the rest was used for training. One

step forecasting is used to forecast the tax receipt data for one

quarter ahead and the actual, rather than forecasted values, are

then used for the next prediction in the forecasting horizon.

A walk-forward validation method (also called rolling cross
validation) [18, 19] was used to evaluate each model on the

test data. A walk-forward model is periodically retrained using

all the data currently available. This means that in each fold

the training data is expanded to include an additional data

point from the test set. In the first fold, a model is trained

on the original training data and is used to forecast the tax

receipt for the next quarter. The forecast is validated by the

first data point in the test set. In the second fold, the training

data is expanded to include the first data point in the original

test data and the model is retrained on this expanded set. The

model is used to forecast the tax receipt for the next quarter

and validated on the second data point in the original test set.

This process continues until the original test set is exhausted.

The forecasting error is then averaged over all the folds. This

is explained in figure 2.

The training data in each fold is standardized to have

zero mean and unit standard deviation. The Mean Absolute

Percentage Error (MAPE) is used to measure the forecasting

error on the test data in each fold:

MAPE = | r̂t − rt
rt

|

where r̂t is the forecasted tax receipt at time t (after inverting

the scaling, seasonal differencing, and log transformations) and

rt is the actual raw tax receipt at time t.

V. MODEL ARCHITECTURE

We propose to train a global model for all sales tax cate-

gories rather than a separate model per category. Since the tax

receipt data is very limited for each time series ( 77 quarters

per tax category), it is challenging to train even a shallow

neural network without overfitting. As the time series data for

different sales tax categories are related, it makes sense to

train a global model for all categories. To do so, we add an

additional feature indicating the sales tax category to which

each tax receipt data belongs. This gives the network more data

and allows it to learn the shared patterns between categories as

well as the characteristics of each individual category. The tax

category is a discrete feature with ten levels. Hence, a one-

hot-encoding should be used to avoid imposing an artificial

ordering on the categories.Using one-hot-encoding, the tax

category for each observation is represented as a binary vector

of size 10 with only one nonzero entry corresponding to

that tax category. This representation is sparse and adds ten

dimensions to the feature space. Hence, we add an embedding

layer on top of the one-hot-encoded tax category to reduce the

dimension of this feature, map it to a continuous space and

capture the relationship between categories.

The embedding layer is essentially a set of linear neurons

on top of the one hot encoded input vector where each neuron
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Fig. 1. Illinois State tax receipt series

Fig. 2. One step rolling cross validation for Illinois sale tax receipt data. The
training set is expanded in each fold by one quarter, and the forecasting is
done for the quarter ahead

simply outputs the weighted sum of the one-hot-encoded

vector. Since there is only one nonzero entry in the one-hot-

encoded vector for each observation, an embedding neuron

essentially outputs the weight for the category corresponding

to the nonzero entry. Hence, the embeddings are simply the

weights of the linear layer and can be learned the same way

as the other parameters of the neural network [20].

If c is a ten-dimensional one-hot encoded binary vector with

value one at position i (category i) and zero values everywhere

else and wj is the weight vector connecting the one-hot-

encoded input layer to neuron j in the embedding layer, then

the output of neuron j in the embedding layer ej is formulated

as:

ej = wjc
T = wij

where wij is the weight connecting neuron i with the non-zero

entry in the one hot encoded input layer to neuron j in the

embedding layer. This means that the embedding layer simply

forwards the weights connected to it from the non-zero entry

in the one-hot-encoded layer.

We start with a simple global MLP model for forecasting the

sale tax receipts. This model has a dense hidden layer which

takes the lagged values of tax receipt and the embeddings

of the tax category as input. We used domain knowledge

and random search to tune the hyper-parameters including

the number of lagged values, the number of embeddings of

the tax category, the number of neurons in the hidden layer

and its dropout rate and activation function. We found that a

time window of 8 lagged values, three embeddings for the tax

category, 50 neurons in the hidden layer with RELU activation

function and 0.2 dropout rate gives the best out-of-sample

performance for our simple MLP model. The architecture of

this model is shown in figure 3. The second model we tried

was a global LSTM model as shown in figure 4. The picture

shows the LSTM cells unrolled in 16 time steps. Similar to the

MLP architecture, this means that overlapping time delayed

windows are created for each time series and the forecasted

tax receipt at time step t depends on the previous lagged

time steps. However, unlike the MLP model where the input

is flattened to remove the notion of sequence, LSTM cells

preserve the sequence between the time steps in the input.

The output of LSTM cells and the embeddings of the tax

categories are then connected to a dense layer which outputs

the forecasted tax receipt. A random search was used to tune

model hyper parameters and the number of embeddings=2,

number of LSTM cells=20, dropout rate=0.2, and recurrent

dropout rate=0.1, were found to yield the best out-of-sample

performance for this model architecture.
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Fig. 3. MLP architecture for tax receipt forecasting

Fig. 4. LSTM architecture for tax receipt forecasting

VI. EXPERIMENT AND RESULTS

Keras was used with Tensorflow backend to implement the

global MLP and the global LSTM models described above.

The batchsize in both models were set to the size of the

training window for each category in rolling cross validation.

This make sense for both models as we want the weights to

be updated after observing all data points from each category.

In addition, the hidden state in each LSTM cell was reset for

each tax category.

The MLP model was trained for 500 epochs and the LSTM

model was trained for 3000 epochs in each fold. The rolling

cross validation for each model is repeated 50 times to get a

more robust estimate of the out-of-sample performance of each

model and offset model sensitivity to random initialization of

weights. The mean of MAPE over all runs for both neural

network models are shown in table I. ARIMA was used as a

benchmark to evaluate the out-of-sample performance of each

neural network model.

Table I shows that on average, the global MLP model

performs the best followed by the LSTM model. Both neural

network models outperform the ARIMA model on average.

This could be due to the fact that the neural network models

can capture non-linear dependencies not captured by the

ARIMA model. The global MLP model has a lower MAPE

compared to the other two models for all but one category

(drugs and retail) for which ARIMA performed better. The

global LSTM model performed better than ARIMA on all but

three categories (automotive & filling stations, drugs & retail,

and manufacturer).

The variations of the MAPE across different runs for both

neural network models are shown in table II. As can be

seen in this table, the rolling cross validation MAPE of the

global MLP model is more stable and has less variation across

different runs. The MLP model is also more stable and much

faster to train than the LSTM model as it does not need to

maintain a hidden state and there are no dependencies between

the outputs.

VII. CONCLUSION AND FUTURE WORK

This study explored the application of deep learning to one

step forecasting of Illinois sale tax receipts on ten different

sales tax categories. An auto regressive shallow MLP model

and a LSTM model were trained on Illinois sale tax receipt

data and their out-of-sample performances were compared

against each other and the traditional ARIMA model. To
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address the data limitation, the time series for all tax categories

were combined and an additional feature was added to the data

to show the tax category of each data point. This feature is

embedded and added as input to both neural network models.

The empirical results showed that the MLP model trained

on the combined data had the lowest average rolling cross

validation MAPE followed by the LSTM model. The MLP

model is also more stable and faster to train than the LSTM

model. Both neural network models outperformed ARIMA on

TABLE I
COMPARISON OF THE ROLLING CROSS VALIDATION MAPE OF THE MLP

AND LSTM MODELS VERSUS THE ARIMA MODEL FOR FORECASTING

ILLINOIS SALE TAX RECEIPTS

Agriculture
Others

Apparel Automotive
Filling
Stations

Drinking
Eating
Places

Drugs
Retail

MLP 3.07 2.79 2.54 0.5 11.48
LSTM 4.16 4.16 4.44 1.47 10.69
ARIMA 5.51 7.39 3.34 3.87 9.87

Food Furniture
HHRadio

General
Merchan-
dise

Lumber
Bldg
Hard-
ware

Manufac.

MLP 3.36 2.72 2.89 3.07 3.77
LSTM 3.91 3.04 5.34 4.0 6.80
ARIMA 8.03 5.06 9.50 6.85 3.91

Mean
across all
categories

MLP 3.63
LSTM 4.80
ARIMA 6.33

TABLE II
THE VARIATIONS OF MAPE FOR THE GLOBAL MLP AND LSTM MODELS

ACROSS 50 RUNS

Agriculture
AllOthers

Apparel Automotive
Filling
Stations

Drinking
Eating
Places

Drugs
Retail

MLP std 427E-4 290E-4 274E-4 102E-4 895E-4
min 2.95 2.71 2.49 0.57 11.31
25% 3.04 2.77 2.53 0.58 11.43
75% 3.10 2.81 2.56 0.59 11.53
max 3.20 2.84 2.60 0.61 11.70

LSTM std 586E-3 787E-3 960E-3 217E-3 115E-2
min 3.09 2.97 3.09 1.02 8.83
25% 3.75 3.49 3.69 1.32 9.80
75% 4.64 4.72 4.88 1.56 11.25
max 5.17 5.69 6.89 2.13 13.31

Food Furniture
HHRadio

General
Merchan-
dise

Lumber
Bldg
Hard-
ware

Manufac.

MLP std 269E-4 272E-4 335E-4 268E-4 488E-4
min 3.29 2.67 2.80 3.02 3.67
25% 3.34 2.70 2.86 3.05 3.73
75% 3.38 2.74 2.90 3.08 3.80
max 3.41 2.78 2.98 3.13 3.9

LSTM std 542E-3 498E-3 825E-3 419E-3 419E-3
min 2.88 2.11 3.41 3.05 5.55
25% 3.60 2.67 4.90 3.79 6.31
75% 4.32 3.36 5.89 4.29 7.23
max 5.16 4.06 6.60 4.72 8.21

average.

As a future work of this study the authors are planning

to explore sequence to sequence models such as transformers

[21] or attention-based encoder-decoder models [22] for more

medium to long-term forecasting of the tax receipt data ( e.g.,

forecasts made for at least a period of four quarters or more).

This will help the sate of Illinois to do longer-term planing

and budgeting.
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