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Background

= How to forecast sales tax receipts?

= “State lacks a good forecasting model” — Revenue Manager,
Commission on Government Forecasting and Budgetary
Accountability

= Usual suspects
Naive models
Regression-based models
System models

= |ssues
Volatility

Seasonality
Structural breaks/Instability
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(Relatively) New Approach: Deep
Learning Methods

= Part of the “unsupervised machine learning” category of
models

= Foundation are multi-layer perceptron models — a type of
artificial neural network
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Fig. 1. Architecture of an MLP (on the right) and the functionality of a
hidden neuron (on the lefi)
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Long-Short Term Memory
Model

= A type of recurrent neural network, appropriate for time-
series data

= Makes the weight at time t a function of inputs at time t
and prediction at t-1

" |ncludes a forget gate and an update gate

LR
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UNIVERSITY Fig. 2. An LSTM cell and its internal gating structure [15]
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Data and Methodology

= Quarterly sales tax receipts by SIC industries,
1999-2018

T=77, n=10
Data is detrended and seasonally adjusted

= Compared forecast accuracy using MAPE
MLP

LSTM
ARIMA

= Walk-forward cross-validation
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Time Series
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Results

TABLE 1

COMPARISON OF THE ROLLING CROSS VALIDATION MAPE oF THE MLP AND LSTM MODELS VERSUS THE ARIMA MODEL FOR FORECASTING
ILLINOIS SALE TAX RECEIPTS

Agriculturg Apparel | Automotive] Drinking | Drugs Food | Furniture | General Lumhber Manufacturers | Mean
AllOthers & Filling | & & & Merchan- | Bldg & ACT 0SS
Stations Eating Retail HHRadio | dise Hard- all cate-
Flaces Ware gOries
MLF 307 279 15 0.5 1148 3.36 272 150 307 377 363
LSTM 4.16 416 4.44 1.47 10.69 391 X0t 534 4.0 £ 80 4.80
ARTMA | 551 T35 13 38T 08T 503 306 950 .83 3.01 6.33
TABLE I
THE vARIATIONS OF MAPE FOR THE GLOBAL MLP AND LSTM MODELS ACROSE 50 RUNS
Agriculture] Apparel Automotive] Drinking | Drugs Food Furniture | General Lumber Manufacturers
AllOthers & Filling | & & & Merchan- | Bldg &
Stations Eating Retail HHRadio | dise Hard-
Flaces ware
MLP std 0.0004ZT 0280 | D027 O00T0T | 0000895 | 0000268 | 0.0002T2 (LHMIG33 0.O0076E 0.00048R
min 195 il 249 05T 11.31 179 1a7 280 307 367
A% | 3 N 153 058 1143 13 270 186 305 373
% 310 LB 136 (R 11.33 138 74 290 308 R
max | 320 18 260 061 117D 140 178 208 313 30
LSTM | =id 0.005868 OO0TETS | 0.0089602 ONZTTT | 0017393 0005424 | 0.004981 .OEZA1 0004191 [ES ]
min 109 a7 XY 1.07 5.83 1E8 11 341 305 3.55
A% | AT5 149 369 1.3 080 160 1al 490 379 6.31
[EL 164 372 188 [.5& 1175 1.37 1.36 580 470 1.3
max | 307 3.69 659 213 1330 3.16 106 6.60 473 821
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Next Steps

= 4-period ahead forecasts
" |nclude regional effects

= Use other types of recurrent neural
networks
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Specific Models

Input La Inpart: Tax Category {one-hot-encoded) input; tramsformed tax values with lag L=E|
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Fig. 5. MLP architecture for tax receipt forecasting
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