Funding Your Ideas:

Writing grants to obtain external support for research, scholarship and creative activities

Keenan Dungey
Associate Vice Chancellor for Research and Institutional Effectiveness
kdungey@uis.edu
217-206-8112

1. Finding Funding
2. Tips for Success
3. Applying for Grants
Writing successful proposals

• Collect & read successful proposals
• Follow program guidelines carefully
• Communicate the intellectual significance and broader impact of your project
• Demonstrate that your plan is workable:
 • 3 goals with measurable outcomes
 • Present preliminary results or highlight a previous project
 • Clearly explain roles & expertise of project personnel

Proposal Writing Tips

DO:
• Follow directions
• Learn as much about your funder as you can
• Use language that is simple and direct
• Repeat the funder’s language back to them
• Include tables, flowcharts and diagrams when they are useful
Tips continued ...

- Proofread
- Have someone not familiar with your work read your proposal
- Prepare a detailed and justifiable budget
- Talk to staff at the funding agency if possible

Tips continued...

DO NOT:
- Go over the number of pages allotted
- Pad your budget with items that can’t be justified
- Assume that reviewers are experts in your field
- Wait until the last minute – to write or to submit
- Send the same proposal off to multiple funders
- Get discouraged!!
What to do if your project is not funded

- **Read reviews carefully / ask for feedback**
 - Common problems:
 - Project does not match grant program (topic, scope, type of award)
 - More information needed to evaluate workability of plan (methods, budget, timetable, personnel)
 - Be prepared to revise
 - Add personnel? Clarify goals or methods? Explain significance more fully?
- **Seek internal funding to develop preliminary results**
- **Keep trying**

KED Grant Proposals Written 2000-2006

<table>
<thead>
<tr>
<th>Agency and Program</th>
<th>Proposal Title</th>
<th>Amount Funded</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Camille and Henry Dreyfus Foundation</td>
<td>Photochemistry of Confined Transition Metal Complexes</td>
<td>$10,000</td>
<td>denied</td>
</tr>
<tr>
<td>Research Corporation</td>
<td>Self-assembly of Gold/Zirconium Phosphate Nanocomposites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Council on Undergraduate Research</td>
<td>Self-assembly of Gold/Zirconium Phosphate Nanocomposites</td>
<td>$5,000</td>
<td></td>
</tr>
<tr>
<td>U.S. National Science Foundation</td>
<td>RFL Acquisition of a Powder X-ray Diffractometer</td>
<td></td>
<td>denied</td>
</tr>
<tr>
<td>American Chemical Society</td>
<td>Describing Synthetic Polyoxometalate Properties of Gold Nanoparticles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Corporation</td>
<td>Self-assembly of Gold/Zirconium Phosphate Nanocomposites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. National Science Foundation</td>
<td>Introducing Aluminized Silicon Photocathode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Chemical Society</td>
<td>Nanofiber Polishing of In-situ Layered Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Corporation</td>
<td>Nanoporous Transition Metal Oxides for Energy Storage</td>
<td></td>
<td>denied</td>
</tr>
<tr>
<td>The National Science Foundation</td>
<td>Integration of Powder X-ray Diffraction Throughout the Chemistry Curriculum</td>
<td></td>
<td>denied</td>
</tr>
<tr>
<td>American Chemical Society</td>
<td>Transition of Polyoxometalate Properties for Gold Nanoparticles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Corporation</td>
<td>Research Community for Water Literacy: Chemistry, Biology, Environment, and Policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The National Science Foundation</td>
<td>Powder X-ray Diffraction in Undergraduate Chemistry Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Chemical Society</td>
<td>The 2D to 3D Magnetic Ordering Transition in Layered Double Hydroxide Mediated by Polyoxometalate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Corporation</td>
<td>False Hematite Oxide for Energy Storage</td>
<td>$12,400</td>
<td></td>
</tr>
<tr>
<td>The National Science Foundation</td>
<td>Collaborative Project Gemini XRD Powder X-ray Diffraction in Undergraduate Chemistry Courses</td>
<td>$82,179</td>
<td></td>
</tr>
<tr>
<td>The National Science Foundation</td>
<td>Collaborative Project Gemini XRD Scanning Probe Microscopy in Undergraduate Chemistry Courses</td>
<td>$74,895</td>
<td></td>
</tr>
<tr>
<td>The National Science Foundation</td>
<td>Powder X-ray Diffraction in Undergraduate Chemistry Courses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Help for Writing the Proposal

- Volunteer to serve as a proposal reviewer for the agency
 You make contacts and learn first-hand about the grants that get funded
- Pre-”peer review”
 • Send a copy of your proposal to a colleague before the submission deadline

Start Now

- Set goals and deadlines for yourself
- Apply to one of the internal UIS grant programs
 • Gain experience in proposal writing
 • Get resources to obtain preliminary results
- Don’t wait
 • Submit a proposal and get feedback.
 • Some programs give preferences to new faculty.

https://blog.grants.gov/2017/06/14/grant-writing-basics-3-tips-to-avoid-last-minute-problems/
Suggestions for Success

• Establish a track record with peer reviewed publications
• Gather preliminary data on the project to demonstrate that you can do it
• Show institutional support
 • List all available resources even if you haven’t tapped into them yet.
• Find collaborators
 • Colleagues down the hall, at another campus
 • Attend professional conferences

Finding Time for Research

• Schedule your academic week into blocks for teaching and research
 • reserve a day, or at least an afternoon, to your scholarship (no meetings, no committees, no classes)
• Reserve summers for research
• underload/overload semesters
 • Since a contact hours are counted for the entire year, you can underload one semester to make time for writing.
• Course-related research can lead to published articles